Buy Tryptamines Acting as the Neuromodulators and Neurotransmitters!

22 Responses

  1. The Neurobiology of an Insect Brain says:

    Preview

    A neurotransmitter is a messenger released from a neuron at an anatomically specialised junction, which diffuses across a narrow cleft to affect one or sometimes two postsynaptic neurons, a muscle cell, or another effector cell. A neuromodulator is a messenger released from a neuron in the central nervous system, or in the periphery, that affects groups of neurons, or effector cells that have the appropriate receptors. It may not be released at synaptic sites, it often acts through second messengers and can produce long-lasting effects. The release may be local so that only nearby neurons or…

    Show More

    Keywords: neurotransmitters; neuromodulators; neurohormones; postsynaptic neurons; effector cell; neurohormone

    Chapter. 24186 words. Illustrated.

    Subjects: Neuroscience

  2. Serotonin (Serotonin system) says:

    Over 90% of the body’s serotonin is found in the gastrointestinal tract where it has a role in regulating bowel function and movements. It also plays a part in reducing the appetite while consuming a meal.
    With this said, it is most well-known for its role in the brain where it plays a major part in mood, anxiety and happiness.
    The Serotonin System

    Click image to Enlarge
    The Serotonin System:

    Influences sustained arousal
    Not tied to sensory input
    Widespread effect on arousal, sensory perception, emotion and higher cognitive function.
    Regulation of pain threshold
    Controls feelings of well-bring, not pleasure
    Affected by SSRI’s (Prozac-type antidepressants).

    Dopamine (Dopamine system)

    Dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in this neuromodulator function appear to be associated with variations in personality. This results in changes in relatively stable patterns of behavior, motivation, emotion, and cognition that differ among individuals. No concrete evidence exists concerning its role in personality, and it has been implicated in traits ranging from extraversion to aggression to intelligence to schizotypy.

    Dopamine (Dopamine system)

    Dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in this neuromodulator function appear to be associated with variations in personality. This results in changes in relatively stable patterns of behavior, motivation, emotion, and cognition that differ among individuals. No concrete evidence exists concerning its role in personality, and it has been implicated in traits ranging from extraversion to aggression to intelligence to schizotypy.

    Dopamine (Dopamine system)

    Dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in this neuromodulator function appear to be associated with variations in personality. This results in changes in relatively stable patterns of behavior, motivation, emotion, and cognition that differ among individuals. No concrete evidence exists concerning its role in personality, and it has been implicated in traits ranging from extraversion to aggression to intelligence to schizotypy.

    Dopamine (Dopamine system)

    Dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in this neuromodulator function appear to be associated with variations in personality. This results in changes in relatively stable patterns of behavior, motivation, emotion, and cognition that differ among individuals. No concrete evidence exists concerning its role in personality, and it has been implicated in traits ranging from extraversion to aggression to intelligence to schizotypy.

    Dopamine (Dopamine system)

    Dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in this neuromodulator function appear to be associated with variations in personality. This results in changes in relatively stable patterns of behavior, motivation, emotion, and cognition that differ among individuals. No concrete evidence exists concerning its role in personality, and it has been implicated in traits ranging from extraversion to aggression to intelligence to schizotypy.

    Dopamine (Dopamine system)

    Dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in this neuromodulator function appear to be associated with variations in personality. This results in changes in relatively stable patterns of behavior, motivation, emotion, and cognition that differ among individuals. No concrete evidence exists concerning its role in personality, and it has been implicated in traits ranging from extraversion to aggression to intelligence to schizotypy.

    Dopamine (Dopamine system)

    Dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in this neuromodulator function appear to be associated with variations in personality. This results in changes in relatively stable patterns of behavior, motivation, emotion, and cognition that differ among individuals. No concrete evidence exists concerning its role in personality, and it has been implicated in traits ranging from extraversion to aggression to intelligence to schizotypy.

    Dopamine (Dopamine system)

    Dopamine is centrally involved in reward, approach behavior, exploration, and various aspects of cognition. Variations in this neuromodulator function appear to be associated with variations in personality. This results in changes in relatively stable patterns of behavior, motivation, emotion, and cognition that differ among individuals. No concrete evidence exists concerning its role in personality, and it has been implicated in traits ranging from extraversion to aggression to intelligence to schizotypy.

  3. neuromodulation and brain stimulation technology. says:

    Researchers and clinicians choose Soterix Medical devices and accessories where the highest standards in performance are required. Soterix Medical products stand-out for their usability, unique features, and precision. Leveraging the most advanced scientific understanding, Soterix Medical technology is the forefront of neuromodulation clinical trials for the treatment of neuropsychiatric disorders and rehabilitation.

  4. A neuromodulator or neurotransmitter in mammalian brain? says:

    Tryptamine synthesized by decarboxylation of L-tryptophan occurs as an endogenous constituent of mammalian brain albeit at very low concentrations (low ng/g range). It is primarily metabolized by oxidative deamination by MAO and possesses an extremely rapid turnover and half-life. Subcellular localization appears to be in nerve terminals and it is releasable by electrical or potassium evoked depolarization. Neuropharmacological and electrophysiological data strongly suggest the existence of post-synaptic receptors for tryptamine independent of those for 5HT. There may exist a rostrally projecting neuronal tryptamine containing system arising from cell bodies in or close to the nucleus raphé medianus. The demonstration of specific receptors for tryptamine in the CNS strongly indicates a transmitter role, although a strong case can be made for a role as a modifier of central 5HT systems. The possibility also exists that 5HT and tryptamine may be mediators of functionally opposite neuronal pathways. Whatever the role of tryptamine in the CNS it is clear that it not simply present as an accident of metabolism or a “biological artefact.” The indications are that it possesses important functions in central neurotransmission.

  5. hypothalamic dysfunction says:

    Some of the effects that hypothalamic dysfunction can have on the various organs and systems of the body are summarised in the diagram below. Inadequate neurotransmitter and hormone production may also negatively impact one’s mitochondrial function. These topics are examined in more detail on this page and other pages in the Health Section.

    Ironically, the major factor behind fatigue in supposedly healthy and those who are chronically fatigued is usually hormonal and neurotransmitter imbalance, namely underactive adrenal and thryoid glands. Probably around 70% of people with CFS have underactive adrenal and thyroid glands. It is however unfashionable to focus on this, and some ‘experts’ prefer to focus on factors like candida or food allergies alone. The CFS web page on psychological management looks into stress, over activity and lack of rest periods as a factor for adrenal burn out. There are many other factors contributing to the stressing of the adrenals glands and impaired neurotransmitter production in general, such as heavy metal toxicity (particularly for the Dopamine/GABA and Serotonin pathways and energy production in the brain), excessive Glutamate and Aspartate intake (results in excitotoxicity and disrupts brain chemistry), excessive free radicals, psychological and physical stress, high carbohydrate diet (especially sugar), nutritional deficiencies, inadquate digestive and amino acid conversion processes, prolonged periods of hunger between meals (3 large, square meals a day approach), recreational/legal drug use (caffeine, alcohol, certain anti-depressants, marijuana, speed, meth, cocaine etc.), and birth control pills etc.

  6. Testicular Health: says:

    The testes in men produce a number of male sex hormones, called androgens, including testosterone. Testerone plays a number of roles in both men and women, but in the concentrations present in men, it assists in skeletal and muscular growth.

    http://training.seer.cancer.gov/module_anatomy/unit6_3_endo_glnds5_gonads.html

    http://endo.wustl.edu/patientcare/endosystem.html

    A continual constriction around the ‘balls’ in men may result in more than just lowered sperm count. As well as being uncomfortable, it may also contribute to decreased hormone production and possibly even damage to the valves in the blood vessels of the epididymis (the coiled tubes at the back of the testicle) – called Varicocele.

    http://en.wikipedia.org/wiki/Varicocele

    The testicles are on the outside of the body in order to provide a slightly lower temperature for optimum sperm production, but it also makes them vulnerable! It is strange that popular culture has valued the cut of trousers and ability to hide an erection at inopportune moments over comfort and the health of the testicles, particularly when sitting down (when one’s jeans/trousers are pinched in the groin region). Loose fitting underwear and baggy trousers are much better for your balls! Office or sedentiary jobs greatly exaccerbate this problem with close fitting underwear and trousers/jeans.

  7. Thyroid Hormones - Thyroid HormonesThyroxine (T4) and Triiodothyronine (T3) says:

    The thyroid gland produces two primary thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Thyroid hormone underproduction is known as hypothyroidism, and may cause symptoms such as fatigue, confusion, achiness, intolerance to cold and constipation. T4 is converted in the body to T3, the active version of the thyroid hormone. In run down patients, the body may not be able to convert T4 into T3. Many thyroid hormone tests tend to focus on the T4 levels in the blood and thus may not provide useful results.

  8. Psychedelic Pharmacology says:

    Most psychedelic molecules are structurally similar to neurotransmitters that modulate signal flow in the brain. If we take a close look at the structure of common neurotransmitters (Fig. 1) the transmitters most closely related to the classic psychedelics are serotonin (5-HT), adrenaline (epinephrine), norepinephrine, and dopamine (DA), and all of these chemicals are classified as amines, meaning that they have a nitrogen (N+) containing amino group hanging off a root carbon ring. This nitrogen structure is the key element in any amino acid, carrying the energy needed for metabolic processes which do work. Since these transmitter chemicals have only one nitrogen group they are called monoamines, and they are the essential messengers of the aminergic neuromodulatory system.

    Monoamines entering the bloodstream are normally kept out of the brain by the blood-brain-barrier, but psychedelic molecules have a neutral charge so they are able to pass. When these amine crystals pass through the blood-brain barrier they brush against neural receptor sites; if the receptors are a good fit then the crystals get stuck for a short period of time. The bonding of amine ligands to serotonin and dopamine receptors is where psychedelic action begins.1,2

    Serotonin and the Tryptamines

    Because of depressive mood disorders and pharmaceuticals like Prozac, the most well known neuromodulator is serotonin, or 5-HT (5-hydroxytryptamine). 5-HT is essential to many basic brain functions, linked to mood, depression, contentment, anxiety, sleep, appetite, and the regulation of involuntary smooth muscles that control blood pressure and digestive functions. Serotonin is an indoleamine and a variant of tryptamine, which is the most basic of all the indoleamines and the structural starting point for DMT (N,N-dimethyltryptamine), 5-MeO-DMT, psilocin, psilocybin, DPT, AMT, and most psychedelic drugs with acronyms ending in T (which stands for Tryptamine). LSD is also a tryptamine, but it is larger and more complex than the other tryptamines, and is in many ways structurally unique.

  9. Dopamine and the Phenethylamines says:

    Working in concert with serotonin is the neuromodulator dopamine (3-hydroxytyramine). Dopamine is synthesized from L-DOPA and is instrumental in modulating salient attention, motivational response, and fine motor control. Dopamine is central to the reward system, and dopamine release is stimulated by recreational drugs, food, gambling, sex, and physical risk taking. Dopamine imbalances are linked Parkinson’s disease, ADD, compulsive risk behavior, and psychosis. The role of dopamine interruption is relevant to psychedelic activity in many aspects; psychedelics may affect sensuality and motor control, and may facilitate psychosis, mania, and compulsive behaviors.

    Amphetamines and the phenethylamine group of psychedelics (mescaline, 2-CB, MDA, MDMA, and so on) are more structurally similar to dopamine, epinephrine, and norepinephrine, which are also monoamines but sometimes referred to as catecholamines since they are based on the single catechol ring structure. Epinephrine and norepinephrine are referred to as stress hormones because they prime the body’s energy production in response to stress and danger. The phenethylamines and catecholamines all have the six-carbon benzene ring backbone, simpler than the dual-ring tryptamine structure, with at least one amine group. The simplest form of this molecule is called phenethylamine, and is structurally similar to amphetamine.

    In very general terms, the phenethylamine psychedelics are said to be more energetic, sensual, empathogenic, or entactogenic, while tryptamine psychedelics are thought to be more hallucinogenic, disorienting, and somatically heavy. These descriptions are very broad, but this is the popular distinction made between the two major classes of psychedelics.

  10. Neuromodulators and Global Brain States says:

    Serotonin, dopamine, and the other monoamines don’t cause neurons to fire, they instead tune the spiking rate of neurons, which means they adjust global network polarity over time to make neural assemblies more or less responsive to stimulus. Serotonin and dopamine are projected into higher areas of the brain from nuclei in the brainstem and middle brain, meaning they are primal signaling mechanisms for modulating many areas of the brain simultaneously. (Fig. 2) The axons from these aminergic clusters reach upward to many areas of the cortex, affecting the thalamus (sensory filter), amygdala (fear and survival), hypothalamus (homeostatic regulator), hippocampus (memory and learning), and neocortex (sensory and logic processing). Neuromodulators synchronize the neural response to incoming stimulus and keep local competing brain circuits functioning smoothly and in unison. These neuromodulators produce a one-way bottom-up effect, which means they are switched on and off reflexively and unconsciously by glands in the brainstem and basal forebrain in direct response to internal conditions or external stimulus. Using neuromodulators the brainstem can exert global homeostatic control over organism mood and behavior. The effect of the aminergic modulators projected upward by the brainstem are tonic, which means their signaling effects are sticky and persist over the duration of many incoming spike trains.

    Generally serotonin is thought to have a polarizing effect on neurons, making them less likely to fire and thus having an overall relaxing effect on the brain. This is why many depression and anxiety remedies focus on increasing the supply of serotonin; to decrease anxiety and increase satisfaction. If we assume psychedelics are mimics for neurotransmitters and apply this analogy to DMT, we would expect DMT to have a calming effect on the brain because it looks similar to serotonin. But a flood of DMT does not calm the brain, it makes it hallucinate. Psychedelics act on the same receptors as serotonin and dopamine, but as partial agonists. Since DMT binds to the same receptor sites as serotonin but does not produce a relaxing effect, it would be logical to assume that DMT is a 5-HT antagonist, meaning it blocks serotonin and depolarizes neurons, making them more excitable. This is not the case. There are many different types of 5-HT receptors, some inhibit neural activity and some promote neural activity. Like most hallucinogens, DMT is classified as a selective 5-HT2A partial or full agonist; also active at other 5-HT subtypes, at adrenal receptors, at Sigma-1 receptors, and at tertiary amine receptors. This means that DMT is active at many 5-HT sites and can mimic some of the agonistic functions of serotonin with varying frequency and efficacy.

    5-HT partial agonism can be described as a subtle form of aminergic modulatory signal interference. In the most general case it can be assumed that psychedelic activity is due to interference at 5-HT receptor subtypes. In more specific cases we can assume that visual hallucinogenic effect is associated with 5-HT2A and 5-HT2C receptor interaction. Somatic heaviness and dreaminess is associated with broader aminergic interaction; and more sensual, entactogenic, or compulsive effects are associated with DA and adrenergic receptor interaction. Psychedelics can have a wide affinity and interact as partial or full agonists at multiple receptor subtypes to produce a wide range of effects. Because psychedelics are full or partial agonists acting on the same modulatory pathways as 5-HT, the synergistic interaction between these competing agonists can be described in terms of a modulatory wave interference pattern. Agonistic interference at 5-HT subtypes promotes disinhibition and extreme excitability between feedback-coupled autonomic neural assemblies in the cortex, midbrain, and brainstem. Excitation in the autonomic neural assemblies which process sensation and memory lead to spontaneous hallucination; excitation in autonomic assemblies which process thought and self-awareness lead to expanded states of psychedelic consciousness.

  11. Molecular Shape and Receptor Affinity says:

    The strength and duration of the bond a ligand forms with a receptor is referred to as receptor affinity or potency, and is described in terms of pharmacodynamics. The higher the affinity the stronger and longer the ligand bonds with a receptor and influences charge moving across the neural membrane. Research has shown that 5-HT2A receptor affinity is an accurate measure of the potency of any psychedelic compound; the higher the affinity the higher the potency and psychedelic effect (Fig 3.).4,5 Another thing we know is that the conformational shape of the amine determines how long the molecule takes to metabolize and how sticky it will be at 5-HT receptor types.6 For instance, the amine tail of LSD is different from other tryptamines; it is long, complex, and connects back to the benzene ring, keeping it rigid instead of flexible like most amino groups or substitutions. Designer amines with a similarly rigid molecular structure have also shown a marked increase in psychedelic potency.7

    Using this information it can be assumed that the unique structure of LSD is what makes it so potent; giving it a high affinity across a wider range of receptor types; making it more difficult to metabolize; and giving it a broader range of effect over a longer duration. DMT also binds to a wide variety of 5-HT receptor types, but it is smaller and metabolizes very quickly. When DMT is taken with a monoamine-oxidase inhibitor (MAOi) in an ayahuasca mixture, the enzymes which metabolize DMT are blocked making the hallucinogenic effects of DMT orally active and longer lasting. Adding an MAOi to any tryptamine psychedelic will make it nearly twice as hallucinogenic.8 These few pieces of pharmacology tell us that the efficacy of modulatory interruption, or psychedelic potency, can be somewhat predicted by molecular shape, the rigidity of the molecular structure, and speed of metabolic pathways.

  12. Dissociatives, Anticholinergics, and Other Hallucinogens says:

    Psychedelic tryptamines and phenethylamines are not the only hallucinogens, but all hallucinogens work by interrupting sensory binding pathways. Hallucinogenic dissociatives like ketamine (special K), phencyclidine (PCP), and dextromethorphan (DXM) interrupt NMDA glutamate sensory signaling pathways; these pathways mediate fast sensory signal projection through the brain. Anticholinergic deliriants like scopolamine and atropine interrupt cholinergic modulation of memory, recall, and dreaming; these pathways mediate the smooth input and output of memory from the hippocampus. Salvia divinorum interrupts Kappa-opioid tactile sensory pathways; these pathways mediate pain, gravity awareness, and feedback for determining physical orientation in space. Depressants like GHB and alcohol interrupt sensory binding via inhibitory GABA pathways, pathways which dampen and slow smooth sensory throughput. Nitrous Oxide (N20) is the simplest and perhaps the most promiscuous of hallucinogens, worming its way in between a number of rudimentary signaling channels to produce novel feelings of dissociation and out-of-body emergence. Although the pharmacological targets of hallucinogens differ, in all cases perceptual distortion is linked directly to interruption of seamless multisensory signaling and binding across the cortex. Any drug which interrupts pathways of multisensory signaling or binding will be considered psychedelic or hallucinogenic at high enough doses, this is why so many different types of plants and chemicals can be uniquely hallucinogenic across many different receptor targets.

  13. Neurotransmitter bios says:

    nervous system’s “off switches”, decreasing the likelihood that an excitatory signal is sent. Inhibitory transmitters regulate the activity of the excitatory neurotransmitters, much like the brakes on a car. Physiologically, the inhibitory transmitters act as the body’s natural tranquilizers, generally serving to induce sleep, promote calmness, and decrease aggression.

  14. Excitatory neurotransmitters says:

    Are the nervous system’s “on switches”, increasing the likelihood that an excitatory signal is sent. Excitatory transmitters can be likened to the accelerator of a car, regulating many of the body’s most basic functions, including thought processes, higher thinking, and sympathetic activity. Physiologically, the excitatory transmitters act as the body’s natural stimulants, generally serving to promote wakefullness, energy, and activity.

  15. Modulators, neuromodulators, says:

    metabolites, or precursors to neurotransmitters. A number of chemicals within the body and nervous system serve as modulators or precursors to neurotransmitters and do not necessarily have excitatory or inhibitory properties.

  16. Neuromodulators says:

    Neuromodulators are chemicals that meet the criteria of a neurotransmitter, however can serve both inhibitory and excitatory roles. Most neuromodulators tend to be either primarily excitatory or primarily inhibitory.

  17. Serotonin Metabolite says:

    5-Hydroxyindoleacetic acid (5-HIAA) is a major metabolite of serotonin, generated via a two step process, involving monoamine oxidase A (MAO-A) and aldehyde dehydrogenase. Measurement of 5-HIAA in combination with serotonin may offer insight into mechanisms underlying various clinical symptoms. The ratio of serotonin to 5-HIAA may be used to evaluate serotonin turnover and monoamine oxidase activity. Abnormal levels of 5-HIAA have been associated with depression, suicidal behaviors, aggression, chronic psychotropic medication use, and Parkinson’s Disease.

  18. Agmatine says:

    gmatine is an inhibitory neurotransmitter that can block the action of glutamate on the NMDA receptor. This mechanism is important in preventing the harmful effects of excess glutamate. Research has shown that agmatine can act to help with swelling which can help protect from chronic neuropathic pain.

  19. Epinephrine says:

    Epinephrine, also known as adrenaline, is an excitatory neurotransmitter and hormone essential for lipolysis, which is a process in which the body metabolizes fat. Epinephrine is derived from the amine norepinephrine. As a neurotransmitter, epinephrine regulates attentiveness and mental focus. Epinephrine is synthesized from norepinephrine.As a hormone, epinephrine is secreted along with norepinephrine principally by the medulla of the adrenal gland. Heightened secretion can occur in response to fear or anger and will result in increased heart rate and the hydrolysis of glycogen to glucose. This reaction, referred to as the “fight or flight” response, prepares the body for strenuous activity. Epinephrine is used medicinally as a stimulant in cardiac arrest, as a vasoconstrictor in shock, as a bronchodilator and antispasmodic in bronchial asthma, and anaphylaxis. Commonly, epinephrine levels will be low due to adrenal fatigue (a pattern in which the adrenal output is suppressed due to chronic stress). Therefore, symptoms can be presented as fatigue with low epinephrine levels. Low levels of epinephrine can also contribute to weight gain and poor concentration. Elevated levels of epinephrine can be factors contributing to restlessness, anxiety, sleep problems, or acute stress.

  20. Glutamate says:

    Glutamate is the major excitatory neurotransmitter in the brain which is necessary for memory and learning. In fact, it is believed that 70% of the fast excitatory CNS synapses utilize glutamate as a transmitter. Excitatory neurotransmitters increase the activity of signal-receiving neurons and play a major role in controlling brain function. Glutamate exerts its effects on cells, in part, through three types of receptors that, when activated, allow the flow of positively charged ions into the cell. These include the ionotropic receptors: kianate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and N-methyl-D-aspartate (NMDA) receptors. There are also series metabotropic glutamate receptors that do not directly manipulate an ion channel.; Of the ionotropic receptors, the N-methyl-D-aspartate (NMDA) receptor plays a particularly important role in controlling the brain’s ability to adapt to environmental and genetic influences which is important for learning and memory.

    An event or process that dramatically increases the activity of glutamate often induces the death of neurons. Such a scenario is believed to take place in e.g. ischemia, trauma, hypoxia, hypoglycemia, and hepatic encephalopathy.; More mild but chronic malfunctioning of glutamatergic systems may be involved in many neurodegenerative diseases such as Huntington´s disease, Parkinson´s disease, Alzheimer´s disease, vascular dementia, amyotrophic lateral sclerosis, AIDS-neurodegeneration, Tourette´s syndrome, and Korsakoff syndrome.It is unlikely that a disturbance of glutamate homeostasis is the sole initiator of these neurodegenerative diseases, but rather that excitotoxicity plays a pivotal executive role in events triggered by other processes such as energy deficits that facilitate the neurotoxic potential of endogenous glutamate.

  21. Norepinephrine says:

    Norepinephrine is an excitatory neurotransmitter that is important for attention and focus. Norepinephrine is synthesized from dopamine by means of the enzyme dopamine beta-hydroxylase, with oxygen, copper, and vitamin C as co-factors. Dopamine is synthesized in the cytoplasm, but norepinephrine is synthesized in the neurotransmitter storage vesicles.; Cells that use norepinephrine for formation of epinephrine use SAMe as a methyl group donor. Levels of epinephrine in the CNS are only about 10% of the levels of norepinephrine.

    The noradrenergic system is most active when an individual is awake, which is important for focused attention. Elevated norepinephrine activity seems to be a contributor to anxiousness. Also, brain norepinephrine turnover is increased in conditions of stress. Interestingly, benzodiazepines, the primary anxiolytic drugs, decrease firing of norepinephrine neurons. This may also help explain the reasoning for benzodiazepine use to induce sleep.

    Norepinephrine acts as an excitatory neurotransmitter and modulates neuron voltage potentials to favor glutamate activity and neurotransmitter firing.

  22. Tyramine says:

    Tyramine (4-hydroxy-phenethylamine) is a naturally occurring monoamine compound formed by the enzymatic decarboxylation of the aromatic amino acid tyrosine. The enzyme monoamine oxidase is responsible for the breakdown of tyramine. When this metabolic pathway is compromised by monoamine oxidase inhibitors (MAOIs), tyramine levels can become elevated and cause the release of neurotransmitters, such as dopamine, norepinephrine, and epinephrine, potentially leading to an increase in blood pressure. Increased decarboxylation of tyrosine will also increase tyramine and decrease substrates available for catecholamine (Epinephrine, Norephinephrine, Dopamine) synthesis. Dietary intake of tyramine has also been associated with cluster headaches and migraines, forcing many to restrict foods containing tyramine such as fish, chocolate, alcohol, and fermented foods including cheese, processed meat, and sauerkraut.

Leave a Reply

Your email address will not be published. Required fields are marked *